Uncovering the Sources of Geographic Market Segmentation: Evidence from the EU and the US

Joris Hoste¹ Frank Verboven²

¹University of Cambridge & KU Leuven

²KU Leuven & CEPR

EUR-CEPR Workshop: Trade, Geography, and Industrial Organisation Erasmus University Rotterdam August 25, 2024

Geographic market integration:

- the unification of spatial units into larger interconnected markets
- typically happens through reductions in:
 - **within-country frictions** e.g. improvements in transport infrastructure
 - cross-border frictions e.g. reductions in variable or fixed trade frictions

Geographic market integration:

- the unification of spatial units into larger interconnected markets
- typically happens through reductions in:
 - within-country frictions e.g. improvements in transport infrastructure
 - **cross-border frictions** e.g. reductions in variable or fixed trade frictions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● のへで 1/52

 \hookrightarrow EU Single Market Project aims for cross-border integration.

Geographic market integration:

- the unification of spatial units into larger interconnected markets
- typically happens through reductions in:
 - within-country frictions e.g. improvements in transport infrastructure
 - cross-border frictions e.g. reductions in variable or fixed trade frictions
- \hookrightarrow EU Single Market Project aims for cross-border integration.

Trade frictions are unobserved. Two approaches:

between and within-country price differences: (Engel & Rogers, 1996; Goldberg & Knetter, 1997)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで 1/52

between and within-country trade shares: (McCallum, 1995; Santamaria et al., 2020)

Geographic market integration:

- the unification of spatial units into larger interconnected markets
- typically happens through reductions in:
 - within-country frictions e.g. improvements in transport infrastructure
 - cross-border frictions e.g. reductions in variable or fixed trade frictions
- \hookrightarrow EU Single Market Project aims for cross-border integration.
- Trade frictions are unobserved. Two approaches:
 - between and within-country price differences: (Engel & Rogers, 1996; Goldberg & Knetter, 1997)
 - between and within-country trade shares: (McCallum, 1995; Santamaria et al., 2020)
- Both approaches have conceptual issues:
 - LOP-deviations ignore differences in product availability and fixed trade frictions
 - Trade shares do not map into trade frictions when consumer taste differs across countries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで 1/52

Propose alternative approach

- **Contribution**: Detect cross-border market segmentation
 - by accounting for both price and availability differences
 - while separating them from differences in consumer taste.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● の ♥ 2/52

Propose alternative approach

- Contribution: Detect cross-border market segmentation
 - by accounting for both price and availability differences
 - while separating them from differences in consumer taste.
- Cross-country scanner data to measure prices and product availability + two-step approach:
 - 1. Measurement: estimate and decompose regional cost-of-living differences:

 $P^{kl} = Price diff.^{kl} + Availability diff.^{kl} + Taste diff^{kl}$

(ロ) (同) (三) (三) (三) (100 - 100

- 2. Identification: design spatial differencing strategy to
 - Isolate variation in between- and within-country variation in prices and availability
 - Under certain conditions this variation maps to the presence of variable and fixed trade frictions.

Propose alternative approach

- Contribution: Detect cross-border market segmentation
 - by accounting for both price and availability differences
 - while separating them from differences in consumer taste.
- Cross-country scanner data to measure prices and product availability + two-step approach:
 - 1. Measurement: estimate and decompose regional cost-of-living differences:

 $P^{kl} = Price diff.^{kl} + Availability diff.^{kl} + Taste diff^{kl}$

(ロ)、(同)、(E)、(E)、 E) の(C) 2/52

- 2. Identification: design spatial differencing strategy to
 - Isolate variation in between- and within-country variation in prices and availability
 - Under certain conditions this variation maps to the presence of variable and fixed trade frictions.

Application:

- Detect cross-border market segmentation between EU countries
- Compare that to potential cross-border market segmentation between US states.

EU countries are segmented, US states are not

Our results:

- Cost-of-living differences are
 - \blacktriangleright ~ 2.5 times larger between *EU countries* compared to within.
 - Barely larger between US States compared to within.
 - A large part of these cost-of-living differences is driven by taste differences

(ロ) (同) (三) (三) (三) (100 a)

EU countries are segmented, US states are not

Our results:

- Cost-of-living differences are
 - \blacktriangleright ~ 2.5 times larger between *EU countries* compared to within.
 - Barely larger between US States compared to within.
 - A large part of these cost-of-living differences is driven by taste differences

For US states

Similar price and product availability differences between and within them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへで 3/52

 \hookrightarrow US States seem well integrated.

EU countries are segmented, US states are not

Our results:

- Cost-of-living differences are
 - \blacktriangleright ~ 2.5 times larger between *EU countries* compared to within.
 - Barely larger between US States compared to within.
 - A large part of these cost-of-living differences is driven by taste differences

For US states

- Similar price and product availability differences between and within them.
- \hookrightarrow US States seem well integrated.

For European countries

- Significantly larger price and product availability differences between EU countries than within them.
- Product availability differences are \sim 3 times larger.
- $\hookrightarrow\,$ Variable and fixed trade frictions still segment European countries.

DATA AND REDUCED FORM-EVIDENCE

Regional scanner data

- Household-level scanner data from 2010-2019:
 - Europe: Belgium, France, Germany, the Netherlands (Kantar + GfK) and the USA (Nielsen HomeScan)
 - Sample of households: \sim 3.500 22.500 households per country-year
 - All household purchases in 68 FMCGs (~ 15% of CPI basket)

Regional scanner data

- Household-level scanner data from 2010-2019:
 - Europe: Belgium, France, Germany, the Netherlands (Kantar + GfK) and the USA (Nielsen HomeScan)
 - Sample of households: ~ 3,500 22,500 households per country-year
 - All household purchases in 68 FMCGs (~ 15% of CPI basket)
- Spatial distribution of prices and product availability:

 - ► GS1 barcode-firm link ⇒ firm identifiers
 - ► Household ZIPcodes ⇒ Regions (> 80 NUTS2 regions + > 150 DMA-States).

Regional scanner data

- Household-level scanner data from 2010-2019:
 - Europe: Belgium, France, Germany, the Netherlands (Kantar + GfK) and the USA (Nielsen HomeScan)
 - Sample of households: ~ 3,500 22,500 households per country-year
 - All household purchases in 68 FMCGs (~ 15% of CPI basket)
- Spatial distribution of prices and product availability:

 - ► GS1 barcode-firm link ⇒ firm identifiers
- Comparable observed consumption behavior and firm size distributions across countries

Price differences, $|p_{pi,kt} - p_{pi,lt}|$, in the EU are large ...

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り < ℃ 5/52

Price differences, $|p_{pi,kt} - p_{pi,lt}|$, in the EU are large ...

Figure 1: LOP deviations (transaction-weighted)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の へ ⊙ 5/52

Price differences, $|p_{pi,kt} - p_{pi,lt}|$, in the EU are large ... (a) Europe (b) United States of America

Figure 1: LOP deviations (transaction-weighted)

... but so are differences in product availability, $1 - \frac{\sum_{i \in B_{p,lt}} \mathbb{1}(i \in B_p^{kl})}{|B_{p,lt}|}$

... but so are differences in product availability, 1

Figure 2: Differences in product availability: Variety-level (Numbers)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで 6/52

Figure 2: Differences in product availability: Variety-level (Numbers)

Firm-level - Numbers Firm-level - Expenditure

TWO-STEP APPROACH

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ 6/52

Step 1: Regional cost-of-living differences - Preterences - First decomposition

Given nested CES-preferences + Taste normalization (à la Redding & Weinstein (2020)) yield: $\ln P_{p,kt}^{kl} - \ln P_{p,lt}^{kl} = \sum_{f \in \Omega_p^{kl}} \omega_{pf,t}^{kl} \left| \sum_{i \in \Omega_{of}^{kl}} \omega_{pfi,t}^{kl} \ln \left(\frac{P_{pfi,kt}}{P_{pfi,lt}} \right) \right| + \frac{1}{\eta_p - 1} \ln \left(\frac{\lambda_{p,kt}^{kl}}{\lambda_{p,lt}^{kl}} \right) + \frac{1}{\sigma_p - 1} \frac{1}{N_p^{kl}} \sum_{f \in \Omega_p^{kl}} \ln \left(\frac{\lambda_{pf,kt}^{kl}}{\lambda_{pf,lt}^{kl}} \right)$ Differences in product availability $(\Lambda_{n,t}^{kl})$ Average price differences $(L_{n,t}^{kl})$ $+\frac{1}{N_{p}^{kl}}\sum_{f\in\Omega_{p}^{kl}}\left[\frac{1}{N_{pf}^{kl}}\sum_{i\in\Omega_{p}^{kl}}\left(\frac{P_{pfi,kt}}{P_{pfi,lt}}\right)\right] -\sum_{f\in\Omega_{p}^{kl}}\omega_{pf,t}^{kl}\left|\sum_{i\in\Omega_{pf}^{kl}}\omega_{pfi,t}^{kl}\ln\left(\frac{P_{pfi,kt}}{P_{pfi,lt}}\right)\right|$ $+\frac{1}{N_{p}^{kl}}\sum_{f\in\Omega_{p}^{kl}}\left|\frac{1}{\eta_{p}-1}\ln\left(\frac{S_{pf,kt}^{kl}}{S_{pf,lt}^{kl}}\right)+\frac{1}{\sigma_{p}-1}\frac{1}{N_{pf}^{kl}}\sum_{i\in\Omega^{kl}}\ln\left(\frac{S_{pfi,kt}^{kl}}{S_{pfi,lt}^{kl}}\right)\right|$ (ロ)、(同)、(目)、(目)、 目、の(C 7/52)

Step 1: Regional cost-of-living differences - Preferences - First decomposition

Nested CES-preferences + Taste normalization (à la Redding & Weinstein (2020)) vield: $\ln P_{p,kt}^{kl} - \ln P_{p,lt}^{kl} = \sum_{f \in \Omega_p^{kl}} \omega_{pf,t}^{kl} \left| \sum_{i \in \Omega_{pf}^{kl}} \omega_{pfi,t}^{kl} \ln \left(\frac{P_{pfi,kt}}{P_{pfi,lt}} \right) \right| + \frac{1}{\eta_p - 1} \ln \left(\frac{\lambda_{p,kt}^{kl}}{\lambda_{p,lt}^{kl}} \right) + \frac{1}{\sigma_p - 1} \frac{1}{N_p^{kl}} \sum_{f \in \Omega_p^{kl}} \ln \left(\frac{\lambda_{pf,kt}^{kl}}{\lambda_{pf,lt}^{kl}} \right)$ Differences in product availability (Λ_{n}^{kl} ,) Average price differences $(L_{n,t}^{kl})$ $+ \frac{1}{N_{\rho}^{kl}} \sum_{f \in \Omega_{pl}^{kl}} \left| \frac{1}{N_{\rho f}^{kl}} \sum_{i \in \Omega_{pl}^{kl}} \left(\frac{P_{\rho fi,kt}}{P_{\rho fi,lt}} \right) \right| - \sum_{f \in \Omega_{\rho}^{kl}} \omega_{\rho f,t}^{kl} \left| \sum_{i \in \Omega_{pl}^{kl}} \omega_{\rho fi,t}^{kl} \ln \left(\frac{P_{\rho fi,kt}}{P_{\rho fi,lt}} \right) \right|$ Taste differences (T_{n}^{kl}) $+\frac{1}{N_{p}^{kl}}\sum_{f\in\Omega_{p}^{kl}}\left|\frac{1}{\eta_{p}-1}\ln\left(\frac{S_{pf,kt}^{kl}}{S_{pf,lt}^{kl}}\right)+\frac{1}{\sigma_{p}-1}\frac{1}{N_{pf}^{kl}}\sum_{i\in\Omega_{p}^{kl}}\ln\left(\frac{S_{pfi,kt}^{kl}}{S_{pfi,lt}^{kl}}\right)\right|$ Taste differences $(T_{n,t}^{kl})$ - ctd.

Step 1: Regional cost-of-living differences - Preferences - First decomposition

Nested CES-preferences + Taste normalization (à la Redding & Weinstein (2020)) yield:

$$\ln P_{p,kl}^{kl} - \ln P_{p,lt}^{kl} = \underbrace{\sum_{t \in \Omega_p^{kl}} \omega_{pft,t}^{kl} \left[\sum_{i \in \Omega_{pf}^{kl}} \omega_{pft,t}^{kl} \ln \left(\frac{P_{pfi,kt}}{P_{pfi,l}} \right) \right]}_{\text{Average price differences}(L_{p,t}^{kl})} + \frac{1}{\eta_p - 1} \ln \left(\frac{\lambda_{p,kt}^{kl}}{\lambda_{p,l,t}^{kl}} \right) + \frac{1}{\sigma_p - 1} \frac{1}{N_p^{kl}} \sum_{t \in \Omega_p^{kl}} \ln \left(\frac{\lambda_{pf,kt}^{kl}}{\lambda_{pf,l}^{kl}} \right) \right]}{\text{Differences in product availability}(\Lambda_{p,t}^{kl})} + \frac{1}{N_p^{kl}} \sum_{t \in \Omega_p^{kl}} \left[\frac{1}{N_p^{kl}} \sum_{i \in \Omega_p^{kl}} \left(\frac{P_{pfi,kt}}{P_{pfi,l}} \right) \right] - \sum_{t \in \Omega_p^{kl}} \omega_{pft,t}^{kl} \left[\sum_{i \in \Omega_{pl}^{kl}} \omega_{pfi,t}^{kl} \ln \left(\frac{P_{pfi,kt}}{P_{pfi,l}} \right) \right]}{\text{Taste differences}(T_{p,t}^{kl})} + \frac{1}{\sigma_p - 1} \frac{1}{N_{pf}^{kl}} \sum_{i \in \Omega_p^{kl}} \ln \left(\frac{S_{pfi,kt}^{kl}}{S_{pfi,l}^{kl}} \right) \right]}{\text{Taste differences}(T_{p,t}^{kl}) - \text{cd.}}$$

Step 1: Regional cost-of-living differences - Preterences - First decomposition

Nested CES-preferences + Taste normalization (à la Redding & Weinstein (2020)) vield: $\ln P_{\rho,kt}^{kl} - \ln P_{\rho,lt}^{kl} = \sum_{f \in \Omega_{\rho}^{kl}} \omega_{\rho f,t}^{kl} \left| \sum_{i \in \Omega_{\rho f}^{kl}} \omega_{\rho fi,t}^{kl} \ln \left(\frac{P_{\rho fi,kt}}{P_{\rho fi,lt}} \right) \right| + \frac{1}{\eta_{\rho} - 1} \ln \left(\frac{\lambda_{\rho,kt}^{kl}}{\lambda_{\rho,lt}^{kl}} \right) + \frac{1}{\sigma_{\rho} - 1} \frac{1}{N_{\rho}^{kl}} \sum_{f \in \Omega_{\rho}^{kl}} \ln \left(\frac{\lambda_{\rho f,kt}^{kl}}{\lambda_{\rho f,lt}^{kl}} \right)$ Differences in product availability ($\Lambda_{n,t}^{kl}$) Average price differences $(L_{p,t}^{kl})$ $+ \frac{1}{N_{\rho}^{kl}} \sum_{f \in \Omega_{\sigma}^{kl}} \left[\frac{1}{N_{\rho f}^{kl}} \sum_{i \in \Omega_{\sigma}^{kl}} \left(\frac{P_{\rho fi,kt}}{P_{\rho fi,lt}} \right) \right] - \sum_{f \in \Omega_{\sigma}^{kl}} \omega_{\rho f,t}^{kl} \left| \sum_{i \in \Omega_{\sigma f}^{kl}} \omega_{\rho fi,t}^{kl} \ln \left(\frac{P_{\rho fi,kt}}{P_{\rho fi,lt}} \right) \right|$ Taste differences (T_{n}^{kl}) $+ \frac{1}{N_p^{kl}} \sum_{f \in \Omega_p^{kl}} \left| \frac{1}{\eta_p - 1} \ln \left(\frac{S_{pf,kt}^{kl}}{S_{pf,lt}^{kl}} \right) + \frac{1}{\sigma_p - 1} \frac{1}{N_{pf}^{kl}} \sum_{i \in \Omega_p^{kl}} \ln \left(\frac{S_{pfi,kt}^{kl}}{S_{pfi,lt}^{kl}} \right) \right|$ Taste differences $(T_{n,t}^{kl})$ - ctd.

Step 2: Spatial differencing strategy - Market structure

Detecting cross-border segmentation requires controlling for domestic trade frictions.

Scanner data does not have production location → domestic trade frictions are unobserved

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ のへで 8/52

 \hookrightarrow **Solution**: Compare absolute differences between international and domestic region pairs

Step 2: Observed transport costs: "Simple differences"

$$\mathbb{E}\left[Y^{kz}(1) - Y^{kz}(0) \middle| B^{kz} = 1, X^{kz} = X\right] \quad \text{where } Y^{lz} = \begin{cases} Y^{kz}(1) & \text{if } B^{kz} = 1, \\ Y^{kz}(0) & \text{if } B^{kz} = 0, \end{cases}$$

.

Step 2: Unobserved transport costs: "Differences in absolute value"

$$E[|Y^{kl}(1)| - |Y^{kl}(0)||B^{kl} = 1, X^{kl} = 0] \quad \text{where } Y^{kl} = \begin{cases} Y^{kl}(1) & \text{if } B^{kl} = 1, \\ Y^{kl}(0) & \text{if } B^{kl} = 0, \end{cases}$$

Step 2: Unobserved transport costs: "Differences in absolute value"

$$\mathbb{E}\left[\left|Y^{kl}(1)\right| - \left|Y^{kl}(0)\right| \middle| B^{kl} = 1, X^{kl} = 0\right] \quad \text{where } P^{kl} = \begin{cases} Y^{kl}(1) & \text{if } B^{kl} = 1, \\ Y^{kl}(0) & \text{if } B^{kl} = 0, \end{cases}$$

Step 2: Unobserved transport costs: "Differences in absolute value"

$$\mathbb{E}\left[\left|Y^{kl}(1)\right| - \left|Y^{kl}(0)\right| \left|B^{kl} = 1, X^{kl} = 0\right] \quad \text{where } P^{kl} = \begin{cases} Y^{kl}(1) & \text{if } B^{kl} = 1, \\ Y^{kl}(0) & \text{if } B^{kl} = 0, \end{cases}\right]$$

Step 2: Spatial differencing strategy - Market structure

Identifying cross-border market segmentation requires controlling for transport costs:

- With scanner data, transport costs are unobserved
- Spatial strategy: Compare absolute differences between international and domestic region pairs:

$$\mathbb{E}\Big[\left|\boldsymbol{Y}^{kl}(1)\right| - \left|\boldsymbol{Y}^{kl}(0)\right|\left|\boldsymbol{B}^{kl}=1, \boldsymbol{X}^{kl}=0\right]$$

Proposition (Detecting cross-border market segmentation) *Given*

- 1. Preferences with infinite choke prices (e.g. CES)
- 2. No diseconomies of scale
- 3. Frictionless domestic entry

We have:

ESTIMATION RESULTS

Detecting cross-border market segmentation - Estimation procedure

To implement the previous proposition, we take three steps:

- 1. Estimate elasticities of substitution σ_p and η_p
 - Variety-level elasticities: $\hat{\mathbb{E}}[\hat{\sigma}_p] = -2.77$ with 10% 90% : [-4.77, -1.15]
 - Firm-level elasticities: $\hat{\mathbb{E}}[\hat{\eta_p}] = -3.10$ with 10% 90% : [-4.84, -1.71]

Detecting cross-border market segmentation - Estimation procedure

To implement the previous proposition, we take three steps:

- 1. Estimate elasticities of substitution σ_p and η_p
 - ▶ Variety-level elasticities: $\hat{\mathbb{E}}[\hat{\sigma_p}] = -2.77$ with 10% 90% : [-4.77, -1.15]
 - Firm-level elasticities: $\hat{\mathbb{E}}[\hat{\eta_p}] = -3.10$ with 10% 90% : [-4.84, -1.71]
- 2. Compute $\ln P_{p,t}^{ml} \ln P_{p,t}^{kl}$ for all region pairs (~ 3200 pairs):
 - Draw a sample of households with replacement in each region
 - Draw from $\hat{N}\left(\hat{\mathbb{E}}\left[\hat{\sigma}_{\rho}\right],\hat{\mathbb{V}}\left[\hat{\sigma}_{\rho}\right]\right)$ and $\hat{N}\left(\hat{\mathbb{E}}\left[\hat{\eta}_{\rho}\right],\hat{\mathbb{V}}\left[\hat{\eta}_{\rho}\right]\right)$
 - Implement the structural decomposition into the three components.

(ロト (同) (三) (三) (三) のへで 19/52

Detecting cross-border market segmentation - Estimation procedure

To implement the previous proposition, we take three steps:

- 1. Estimate elasticities of substitution σ_p and η_p
 - ▶ Variety-level elasticities: $\hat{\mathbb{E}}[\hat{\sigma_p}] = -2.77$ with 10% 90% : [-4.77, -1.15]
 - Firm-level elasticities: $\hat{\mathbb{E}}[\hat{\eta_p}] = -3.10$ with 10% 90% : [-4.84, -1.71]
- 2. Compute $\ln P_{p,t}^{ml} \ln P_{p,t}^{kl}$ for all region pairs (~ 3200 pairs):
 - Draw a sample of households with replacement in each region
 - Draw from $\hat{N}\left(\hat{\mathbb{E}}\left[\hat{\sigma}_{\rho}\right],\hat{\mathbb{V}}\left[\hat{\sigma}_{\rho}\right]\right)$ and $\hat{N}\left(\hat{\mathbb{E}}\left[\hat{\eta}_{\rho}\right],\hat{\mathbb{V}}\left[\hat{\eta}_{\rho}\right]\right)$
 - Implement the structural decomposition into the three components.
- 3. For each bootstrap sample, find the set of "geographically close" region pairs $\mathcal{D}_{\varepsilon} \equiv \left\{ (k, l) : B^{kl} = 1 \cap F\left(D\left(\boldsymbol{X}^{kl}\right)\right) \leq \varepsilon \right\}$ and compute

$$\hat{\tau}_{L,\varepsilon} \equiv \frac{1}{N} \sum_{(k,l) \in \mathcal{D}_{\varepsilon}} \left[|L_{p,t}^{kl}(1)| - |\hat{L}_{p,t}^{kl}(0)| \right], \qquad \hat{\tau}_{\Lambda,\varepsilon} \equiv \frac{1}{N} \sum_{(k,l) \in \mathcal{D}_{\varepsilon}} \left[|\Lambda_{p,t}^{kl}(1)| - |\hat{\Lambda}_{p,t}^{kl}(0)| \right]$$

(ロト (同) (三) (三) (三) のへで 19/52
Table 1: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.3787***	.3041***	.0967***	.2972***
	[.3548, .4114]	[.2866, .3276]	[.0953, .0977]	[.2768, .3259]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.26	.2372	.0125	.0427
Nr. treated	146	146	146	146
Nr. matched units	1	1	1	1
Nr. unique controls	81	81	81	81
Nr. obs	9,928	9,928	9,928	9,928
USA				
$\hat{\gamma}_{Y,\varepsilon}$.0049*	.0092***	.0062***	.0145***
	[0008, .0098]	[.005, .0138]	[.0059, .0065]	[.0127, .0165]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4168	.356	.0241	.0926
Nr. treated	601	601	601	601
Nr. matched units	1	1	1	1
Nr. unique controls	98	98	98	98
Nr. obs	40,100	40,100	40,100	40,100

Table 1: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.3787***	.3041***	.0967***	.2972***
	[.3548,.4114]	[.2866, .3276]	[.0953, .0977]	[.2768, .3259]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.26	.2372	.0125	.0427
Nr. treated	146	146	146	146
Nr. matched units	1	1	1	1
Nr. unique controls	81	81	81	81
Nr. obs	9,928	9,928	9,928	9,928
USA				
$\hat{\gamma}_{\mathbf{Y},\varepsilon}$.0049*	.0092***	.0062***	.0145***
	[0008, .0098]	[.005, .0138]	[.0059, .0065]	[.0127, .0165]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4168	.356	.0241	.0926
Nr. treated	601	601	601	601
Nr. matched units	1	1	1	1
Nr. unique controls	98	98	98	98
Nr. obs	40,100	40,100	40,100	40,100

Table 1: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.3787***	.3041***	.0967***	.2972***
	[.3548, .4114]	[.2866, .3276]	[.0953, .0977]	[.2768, .3259]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.26	.2372	.0125	.0427
Nr. treated	146	146	146	146
Nr. matched units	1	1	1	1
Nr. unique controls	81	81	81	81
Nr. obs	9,928	9,928	9,928	9,928
USA				
$\hat{\gamma}_{Y,\varepsilon}$.0049*	.0092***	.0062***	.0145***
	[0008, .0098]	[.005, .0138]	[.0059, .0065]	[.0127, .0165]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4168	.356	.0241	.0926
Nr. treated	601	601	601	601
Nr. matched units	1	1	1	1
Nr. unique controls	98	98	98	98
Nr. obs	40,100	40,100	40,100	40,100

Table 1: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.3787***	.3041***	.0967***	.2972***
	[.3548, .4114]	[.2866, .3276]	[.0953, .0977]	[.2768, .3259]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.26	.2372	.0125	.0427
Nr. treated	146	146	146	146
Nr. matched units	1	1	1	1
Nr. unique controls	81	81	81	81
Nr. obs	9,928	9,928	9,928	9,928
USA				
$\hat{\gamma}_{Y,\varepsilon}$.0049*	.0092***	.0062***	.0145***
	[0008, .0098]	[.005, .0138]	[.0059, .0065]	[.0127, .0165]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4168	.356	.0241	.0926
Nr. treated	601	601	601	601
Nr. matched units	1	1	1	1
Nr. unique controls	98	98	98	98
Nr. obs	40,100	40,100	40,100	40,100

Table 1: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{\mathbf{Y},\varepsilon}$.3787***	.3041***	.0967***	.2972***
	[.3548, .4114]	[.2866, .3276]	[.0953, .0977]	[.2768, .3259]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.26	.2372	.0125	.0427
Nr. treated	146	146	146	146
Nr. matched units	1	1	1	1
Nr. unique controls	81	81	81	81
Nr. obs	9,928	9,928	9,928	9,928
USA				
$\hat{\gamma}_{\mathbf{Y},\varepsilon}$.0049*	.0092***	.0062***	.0145***
	[0008, .0098]	[.005, .0138]	[.0059, .0065]	[.0127, .0165]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4168	.356	.0241	.0926
Nr. treated	601	601	601	601
Nr. matched units	1	1	1	1
Nr. unique controls	98	98	98	98
Nr. obs	40,100	40,100	40,100	40,100

Table 1: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{\rho,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.3787***	.3041***	.0967***	.2972***
	[.3548, .4114]	[.2866, .3276]	[.0953, .0977]	[.2768, .3259]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.26	.2372	.0125	.0427
Nr. treated	146	146	146	146
Nr. matched units	1	1	1	1
Nr. unique controls	81	81	81	81
Nr. obs	9,928	9,928	9,928	9,928
USA				
$\hat{\gamma}_{\mathbf{Y},\varepsilon}$.0049*	.0092***	.0062***	.0145***
	[0008, .0098]	[.005, .0138]	[.0059, .0065]	[.0127, .0165]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4168	.356	.0241	.0926
Nr. treated	601	601	601	601
Nr. matched units	1	1	1	1
Nr. unique controls	98	98	98	98
Nr. obs	40,100	40,100	40,100	40,100

Placebo estimates - Price differences

Figure 3: Price differences

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ 三 の Q ○ 14/52

Placebo estimates - Price differences

Figure 3: Price differences

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 14/52

Placebo estimates - Product availability differences

Figure 4: Differences in product availability

Placebo estimates - Product availability differences

Figure 4: Differences in product availability

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 15/52

CONCLUSION

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ · 필 · 의 ۹ ℃ 15/52

Conclusion

- Study cross-border market segmentation in final goods markets
- We propose an alternative approach in which
 - We account for both LOP deviations and choice set differences as manifestations of cross-border geographic market segmentation
 - We control for taste differences for common varieties
- Main findings:
 - Controlling for taste differences is quantitatively important
 - Cannot reject that **US states** are geographically integrated.
 - European final goods markets remain segmented across borders with most variation accounted for by differences in product availability

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ · · · ○ ○ ○ ○ 16/52.

APPENDIX

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へで 17/52

Literature

- Cost-of-living differences with CES: Feenstra (1994); Broda & Weinstein (2006); Handbury & Weinstein (2015); Redding & Weinstein (2020); Feenstra et al. (2020); Argente et al. (2021); Cavallo et al. (2023)
 - Literature: Focus on differences over time, across countries or within countries
 - ► *This paper*: Combine differences across and within country ⇒ Cross-border market segmentation
- LOP deviatons: Engel & Rogers (1996), Gorodnichenko & Tesar (2009), ?, Cavallo et al. (2014) and Beck et al. (2020)
 - Literature: Focused on price differences for a small set of available varieties
 - This paper: Add differences in product availability
- Border effects in Trade: McCallum (1995), Anderson & Wincoop (2003), Helpman et al. (2008) and Santamaria et al. (2020)
 - Literature: Strong assumptions on demand and market structure to map trade shares to trade costs
 - This paper: Empirically separate geographic market segmentation from differences in consumer taste

Data Sources

Back

Household-level scanner data at country-household-barcode-chain-time level:

- Belgium, France, Germany and the Netherlands
- ▶ Sample of households: ~ 3,500 22,500 households/year
- Food and non-food FMGCs: 68 categories ~ 15% of CPI
- Universe of stores
- Data from 2010 to 2019
- Firm identifiers obtained from GS1
 - Link barcodes to unique GS1 firm IDs
 - Identify barcodes supplied by common firms across countries
- Geographic data from Eurostat GISCO, EEA and US Geological Survey
 - Link household ZIP codes to NUTS2 regions
 - > 80 NUTS2 region pairs.

Comparability across countries - Transactions

Figure 5: Purchases per week

- ク < C 20/52

Comparability across countries - Expenditure per year

Figure 6: Expenditure per year

Comparability across countries - Firm size distribution

Belgium France Nr. UPCs Nr Firms Bin share St dev. UPC sales Nr. Firms Bin share St dev. UPC sales 1 174 1.47 1.36 65 0.76 1.63 2-5 126 3.90 1.42 57 2.84 1.65 6-10 33 3.78 1.50 22 3.59 1.67 11-20 23 6.69 1.54 19 6.56 1.67 21-50 15 14.34 1.62 21 16.69 1.70 51-100 7 19.47 1.68 9 19.17 1.68 > 100 7 56.50 1.83 9 56.50 1.74 Netherlands Germany Nr. Firms Nr. UPCs Nr. Firms Bin share St dev. UPC sales Bin share St dev. UPC sales 99 1.30 1.66 128 1.12 1.69 1 2-5 105 4.41 1.63 104 3.39 1.74 6-10 36 4.34 1.66 30 3.40 1.79 11-20 29 7.74 1.70 22 6.93 1.85 21-50 27 16.45 1.76 18 16.32 1.91 7 18.06 51-100 12 20.16 1.85 1.86 58.02 > 100 10 52.16 1.95 9 1.94

Table 2: Size Distribution by number of UPCs

Comparability across countries - Firm size distribution

Table 3: Average Firm and UPC size

	Belgium				France			
	Mean	Median	10 th %	90 th %	Mean	Median	10 th %	90 th %
Nr. firms	300	262	102	545	199	166	75	377
Firm sales	1,272	1,029	503	2,436	5,169	4,452	1,868	9,208
Log firm sales	4	4	3	4	5	5	5	6
UPCs per firm	10	10	6	14	18	16	9	26
UPC sales	45	38	20	77	161	120	64	313
	Germany				Netherlands			
		Germ	nany			Nether	lands	
	Mean	Germ Median	nany 10 th %	90 th %	Mean	Nether Median	lands 10 th %	90 th %
Nr. firms	Mean 305	Germ Median 273	nany 10 th % 91	90 th %	Mean 272	Nether Median 257	lands 10 th % 95	90 th %
Nr. firms Firm sales	Mean 305 5,320	Germ Median 273 4,390	nany 10 th % 91 2,242	90 th % 609 9,182	Mean 272 2,953	Nether Median 257 2,463	lands 10 th % 95 1,061	90 th % 484 5,690
Nr. firms Firm sales Log firm sales	Mean 305 5,320 6	Germ Median 273 4,390 6	nany 10 th % 91 2,242 5	90 th % 609 9,182 6	Mean 272 2,953 4	Nether Median 257 2,463 4	lands 10 th % 95 1,061 4	90 th % 484 5,690 5
Nr. firms Firm sales Log firm sales UPCs per firm	Mean 305 5,320 6 15	Germ Median 273 4,390 6 13	nany 10 th % 91 2,242 5 8	90 th % 609 9,182 6 23	Mean 272 2,953 4 11	Nether Median 257 2,463 4 11	lands 10 th % 95 1,061 4 6	90 th % 484 5,690 5 16

Comparability across countries - Firm size distribution

Table 4: Size distribution by Decile

		E	Belgium				France	
Decile	Decile mkt	Firm mkt	Mean UPCs	Median UPCs	Decile mkt	Firm mkt	Mean UPCs	Median UPCs
1	92.38	4.15	61.9	35.7	84.10	5.72	99.1	75.9
2	4.42	0.25	12.9	9.5	9.87	0.82	30.4	25.2
3	1.54	0.08	7.4	5.7	3.33	0.29	16.7	13.0
4	0.73	0.04	4.7	3.7	1.40	0.12	10.1	8.0
5	0.41	0.02	3.2	2.5	0.70	0.06	6.8	5.5
6	0.45	0.01	2.7	2.1	0.66	0.04	5.1	3.7
7	0.14	0.01	1.9	1.5	0.17	0.01	2.9	2.2
8	0.08	0.00	1.5	1.1	0.08	0.01	2.1	1.6
9	0.05	0.00	1.2	1.0	0.03	0.00	1.6	1.2
10	0.02	0.00	1.1	1.0	0.01	0.00	1.1	1.0
		-						
		G	Germany			Ne	therlands	
Decile	Decile mkt	Firm mkt	Bermany Mean UPCs	Median UPCs	Decile mkt	Ne Firm mkt	therlands Mean UPCs	Median UPCs
Decile	Decile mkt 84.97	Firm mkt 4.20	Mean UPCs 85.7	Median UPCs 55.5	Decile mkt 91.81	Ne Firm mkt 4.36	Mean UPCs 85.8	Median UPCs 40.5
Decile 1 2	Decile mkt 84.97 8.62	Firm mkt 4.20 0.52	Mean UPCs 85.7 23.2	Median UPCs 55.5 18.7	Decile mkt 91.81 5.31	Ne Firm mkt 4.36 0.36	Mean UPCs 85.8 14.2	Median UPCs 40.5 9.7
Decile 1 2 3	Decile mkt 84.97 8.62 3.25	Firm mkt 4.20 0.52 0.19	Aermany Mean UPCs 85.7 23.2 12.5	Median UPCs 55.5 18.7 9.7	Decile mkt 91.81 5.31 1.60	Ne Firm mkt 4.36 0.36 0.11	Mean UPCs 85.8 14.2 8.1	Median UPCs 40.5 9.7 5.6
Decile 1 2 3 4	Decile mkt 84.97 8.62 3.25 1.50	Firm mkt 4.20 0.52 0.19 0.08	Mean UPCs 85.7 23.2 12.5 7.6	Median UPCs 55.5 18.7 9.7 5.8	Decile mkt 91.81 5.31 1.60 0.64	Ne Firm mkt 4.36 0.36 0.11 0.04	Mean UPCs 85.8 14.2 8.1 5.3	Median UPCs 40.5 9.7 5.6 3.9
Decile 1 2 3 4 5	Decile mkt 84.97 8.62 3.25 1.50 0.82	Firm mkt 4.20 0.52 0.19 0.08 0.04	Mean UPCs 85.7 23.2 12.5 7.6 4.7	Median UPCs 55.5 18.7 9.7 5.8 3.5	Decile mkt 91.81 5.31 1.60 0.64 0.32	Firm mkt 4.36 0.36 0.11 0.04 0.02	therlands Mean UPCs 85.8 14.2 8.1 5.3 3.8	Median UPCs 40.5 9.7 5.6 3.9 2.8
Decile 1 2 3 4 5 6	Decile mkt 84.97 8.62 3.25 1.50 0.82 0.83	Firm mkt 4.20 0.52 0.19 0.08 0.04 0.03	Mean UPCs 85.7 23.2 12.5 7.6 4.7 3.9	Median UPCs 55.5 18.7 9.7 5.8 3.5 2.9	Decile mkt 91.81 5.31 1.60 0.64 0.32 0.32	Firm mkt 4.36 0.36 0.11 0.04 0.02 0.01	therlands Mean UPCs 85.8 14.2 8.1 5.3 3.8 3.1	Median UPCs 40.5 9.7 5.6 3.9 2.8 2.3
Decile 1 2 3 4 5 6 7	Decile mkt 84.97 8.62 3.25 1.50 0.82 0.83 0.24	Firm mkt 4.20 0.52 0.19 0.08 0.04 0.03 0.01	Mean UPCs 85.7 23.2 12.5 7.6 4.7 3.9 2.7	Median UPCs 55.5 18.7 9.7 5.8 3.5 2.9 2.0	Decile mkt 91.81 5.31 1.60 0.64 0.32 0.32 0.09	Firm mkt 4.36 0.36 0.11 0.04 0.02 0.01 0.00	therlands Mean UPCs 85.8 14.2 8.1 5.3 3.8 3.1 2.1	Median UPCs 40.5 9.7 5.6 3.9 2.8 2.3 1.6
Decile 1 2 3 4 5 6 7 8	Decile mkt 84.97 8.62 3.25 1.50 0.82 0.83 0.24 0.12	Firm mkt 4.20 0.52 0.19 0.08 0.04 0.03 0.01 0.01	Aermany Mean UPCs 85.7 23.2 12.5 7.6 4.7 3.9 2.7 2.1	Median UPCs 55.5 18.7 9.7 5.8 3.5 2.9 2.0 1.5	91.81 5.31 1.60 0.64 0.32 0.32 0.09 0.04	Firm mkt 4.36 0.36 0.11 0.04 0.02 0.01 0.00 0.00	therlands Mean UPCs 85.8 14.2 8.1 5.3 3.8 3.1 2.1 1.7	Median UPCs 40.5 9.7 5.6 3.9 2.8 2.3 1.6 1.2
Decile 1 2 3 4 5 6 7 8 9	Decile mkt 84.97 8.62 3.25 1.50 0.82 0.83 0.24 0.12 0.06	Firm mkt 4.20 0.52 0.19 0.08 0.04 0.03 0.01 0.01 0.01	Aermany Mean UPCs 85.7 23.2 12.5 7.6 4.7 3.9 2.7 2.1 1.6	Median UPCs 55.5 18.7 9.7 5.8 3.5 2.9 2.0 1.5 1.1	Decile mkt 91.81 5.31 1.60 0.64 0.32 0.32 0.09 0.04 0.04	Firm mkt 4.36 0.36 0.11 0.04 0.02 0.01 0.00 0.00 0.00	therlands Mean UPCs 85.8 14.2 8.1 5.3 3.8 3.1 2.1 1.7 1.3	Median UPCs 40.5 9.7 5.6 3.9 2.8 2.3 1.6 1.2 1.0

Price differences are large ... - Pass

Three steps to compute a measure of LOP deviations:

- 1. Define the set of varieties, \mathcal{B}_{lt} , for region *l* at time *t*.
- 2. Define the set of common varieties, \mathcal{B}^{kl} , for regions k and l:

 $\mathcal{B}^{kl} \equiv \{i \mid \exists i \in \Omega_{lt} \cap \exists i \in \Omega_{kt}\}$

3. Within region pair-time units, compute absolute LOP deviations:

 $|p_{pi,kt} - p_{pi,lt}|$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで 25/52

Price differences are large ... - Deck

Figure 7: LOP deviations (Unweighted)

Price differences are large ... - Deck

Figure 8: LOP deviations (Branded and Private label)

Price differences are large ... - Pass

Back

Figure 9: LOP deviations (Branded)

(□) (□) (□) (=) (=) (=) (0, 0) (28/52)

Price differences are large ... - Deck

Figure 10: LOP deviations (Within chains)

Three steps to compute differences in product availability

- 1. Consider again the set of varieties \mathcal{B}_{lt} in region *l*
- 2. Consider again the set of common varieties, \mathcal{B}^{kl} , for regions k and l:
- 3. Within region pair-time units, compute the share on varieties which not common:

$$N_{p,t}^{\mathcal{B},kl} \equiv 1 - \frac{\sum_{i \in \mathcal{B}_{p,lt}} \mathbb{1}\left(i \in \mathcal{B}_{p}^{kl}\right)}{|\mathcal{B}_{p,lt}|}, \quad \lambda_{p,t}^{\mathcal{B},kl} \equiv 1 - \frac{\sum_{i \in \mathcal{B}_{p,lt}} \mathcal{E}_{pfi,lt} \mathbb{1}\left(i \in \mathcal{B}_{p}^{p,kl}\right)}{\sum_{i \in \mathcal{B}_{p,lt}} \mathcal{E}_{pfi,lt}}$$

. .

(ロト (母) (王) (王) (王) (30/52)

... but so are differences in product availability - 1 - $\frac{\sum_{i \in \mathcal{B}_{p,lt}} E_{pfi,lt} \mathbb{1}(i \in \mathcal{B}_p^{p,kl})}{\sum_{i \in \mathcal{B}_p, t} E_{pfi,lt}}$

Figure 11: Differences in product availability: Variety-level (Expenditure)

... but so are differences in product availability - $1 - \frac{\sum_{i \in B_{p,lt}} \mathbb{1}(i \in B_p^{kl})}{|B_{p,lt}|}$

Figure 12: Product availability differences: Variety-level (Numbers) - Branded and Private label

... but so are differences in product availability - 1 - $\frac{\sum_{i \in B_{p,lt}} \mathbb{1}(i \in B_p^{kl})}{|B_{p,lt}|}$

Figure 13: Product availability differences: Variety-level (Numbers) - Branded

≣ ∽ < ℃ 33/52

... but so are differences in product availability - 1 - $\frac{\sum_{f \in \mathcal{F}_{p,lt}} \mathbb{1}(f \in \mathcal{F}_p^{kl})}{|\mathcal{F}_{p,lt}|}$

≣ ∽ < C° 34/52

Figure 14: Differences in product availability: Firm-level (Numbers) ... but so are differences in product availability - 1 - $\frac{\sum_{f \in \mathcal{F}_{p,lt}} E_{pf,lt} \mathbb{1}(f \in \mathcal{F}_p^{kl})}{\sum_{f \in \mathcal{F}_{p,lt}} E_{pf,lt}}$

Figure 15: Differences in product availability: Firm-level (Expenditure), E Source State

Step 1: Preferences - • Back

Consumers in region *I* at time *t* have the following preferences:

Across product categories, there is a homothetic and separable aggregator:

$$U(C_{lt}) = F\left(\left\{C_{p,lt}\right\}_{p=1}^{\mathcal{P}}\right)$$

▲□▶▲圖▶▲필▶▲필▶ 필 のへで 36/52

Step 1: Preferences - • Back

Consumers in region / at time *t* have the following preferences:

• Across product categories, there is a homothetic and separable aggregator:

$$U(C_{lt}) = F\left(\left\{C_{p,lt}\right\}_{p=1}^{\mathcal{P}}\right)$$

 Within product categories, consumers substitute between firms and varieties with nested CES preferences

$$C_{p,lt} = \left(\sum_{f \in \Omega_{p,lt}} \left(\xi_{pf,lt} C_{pf,lt}\right)^{\frac{\eta_p - 1}{\eta_p}}\right)^{\frac{\eta_p - 1}{\eta_p - 1}}, \quad C_{pf,lt} = \left(\sum_{i \in \Omega_{pf,lt}} \left(\xi_{pfi,lt} C_{pfi,lt}\right)^{\frac{\sigma_p - 1}{\sigma_p}}\right)^{\frac{\sigma_p - 1}{\sigma_p - 1}}$$

(日)、(母)、(目)、(目)、(目)、(の)(C) 36/52

Step 1: Preferences - • Back

Consumers in region *I* at time *t* have the following preferences:

• Across product categories, there is a homothetic and separable aggregator:

$$U(C_{lt}) = F\left(\left\{C_{p,lt}\right\}_{p=1}^{\mathcal{P}}\right)$$

 Within product categories, consumers substitute between firms and varieties with nested CES preferences

$$\boldsymbol{C}_{\boldsymbol{\rho},lt} = \left(\sum_{f \in \Omega_{\boldsymbol{\rho},lt}} \left(\xi_{\boldsymbol{\rho}f,lt} \boldsymbol{C}_{\boldsymbol{\rho}f,lt}\right)^{\frac{\eta_{\boldsymbol{\rho}}-1}{\eta_{\boldsymbol{\rho}}}}\right)^{\frac{\eta_{\boldsymbol{\rho}}-1}{\eta_{\boldsymbol{\rho}}-1}}, \quad \boldsymbol{C}_{\boldsymbol{\rho}f,lt} = \left(\sum_{i \in \Omega_{\boldsymbol{\rho}f,lt}} \left(\xi_{\boldsymbol{\rho}fi,lt} \boldsymbol{C}_{\boldsymbol{\rho}fi,lt}\right)^{\frac{\sigma_{\boldsymbol{\rho}}-1}{\sigma_{\boldsymbol{\rho}}}}\right)^{\frac{\sigma_{\boldsymbol{\rho}}}{\sigma_{\boldsymbol{\rho}}-1}}$$

Utility functions are homogenous of degree 1 in consumer taste, therefore we **normalize** them as follows: $\sqrt{\frac{1}{N-1}}$

$$\tilde{\xi}_{fp,lt} \equiv \left(\prod_{i \in \Omega_{pf,lt}} \xi_{pfi,lt}\right)^{N_{pf,lt}} = \left(\prod_{i \in \Omega_{pf,lt+1}} \xi_{pfi,lt+1}\right)^{N_{pf,lt+1}} \equiv \tilde{\xi}_{pf,lt+1}$$

Back

4

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 37/52

From Redding & Weinstein (2020), cost-of-living differences between region *k* and *l* are the ratio of unit expenditure functions in *k* and *l* respectively,

$$\frac{P_{p,kt}}{P_{p,lt}} = \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{P_{pf,kt}}{P_{pf,lt}} \right) \right]^{\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{\xi_{pf,kt}}{\xi_{pf,lt}} \right) \right]^{-\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{S_{pf,kt}^{kl}}{S_{pf,lt}^{kl}} \right)^{\frac{1}{\eta_p-1}} \right]^{\frac{1}{N_p^{kl}}} \cdot \left(\frac{\lambda_{p,kt}^{kl}}{\lambda_{p,lt}^{kl}} \right)^{\frac{1}{\eta_p-1}}$$

with $\Omega_{p,lt}$ the set of common firms.

Step 1: Cost-of-living Differences

Back

4

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 37/52

From Redding & Weinstein (2020), cost-of-living differences between region *k* and *l* are the ratio of unit expenditure functions in *k* and *l* respectively,

$$\frac{P_{p,kt}}{P_{p,lt}} = \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{P_{pf,kt}}{P_{pf,lt}} \right) \right]^{\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{\xi_{pf,kt}}{\xi_{pf,lt}} \right) \right]^{-\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{S_{pf,kt}^{kl}}{S_{pf,lt}^{kl}} \right)^{\frac{1}{\eta_p - 1}} \right]^{\frac{1}{N_p^{kl}}} \cdot \left(\frac{\lambda_{p,kt}^{kl}}{\lambda_{p,lt}^{kl}} \right)^{\frac{1}{\eta_p - 1}}$$

with $\Omega_{p,lt}$ the set of common firms. Average Law of One Price (LOP) deviations:

$$\prod_{f \in \Omega_p^{kl}} \left[\left(\frac{P_{\rho f, kt}}{P_{\rho f, lt}} \right) \right]^{\frac{1}{N_p^{kl}}}$$
Step 1: Cost-of-living Differences

From Redding & Weinstein (2020), cost-of-living differences between region k and l are the ratio of unit expenditure functions in k and l respectively,

$$\frac{P_{p,kt}}{P_{p,lt}} = \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{P_{pf,kt}}{P_{pf,lt}} \right) \right]^{\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{\xi_{pf,kt}}{\xi_{pf,lt}} \right) \right]^{-\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{S_{pf,kt}^{kl}}{S_{pf,lt}^{kl}} \right)^{\frac{1}{\eta_p - 1}} \right]^{\frac{1}{N_p^{kl}}} \cdot \left(\frac{\lambda_{p,kt}^{kl}}{\lambda_{p,lt}^{kl}} \right)^{\frac{1}{\eta_p - 1}}$$

with $\Omega_{p,lt}$ the set of common firms. **Unweighted average Taste differences**:

4

$$\prod_{f \in \Omega_p^{kl}} \left[\left(\frac{\xi_{pf,kt}}{\xi_{pf,lt}} \right) \right]^{-\frac{1}{N_p^{kl}}} = 1$$

Step 1: Cost-of-living Differences

From Redding & Weinstein (2020), cost-of-living differences between region k and l are the ratio of unit expenditure functions in k and l respectively,

$$\frac{P_{\rho,kt}}{P_{\rho,lt}} = \prod_{f \in \Omega_{\rho}^{kl}} \left[\left(\frac{P_{\rho f,kt}}{P_{\rho f,lt}} \right) \right]^{\frac{1}{N_{\rho}^{kl}}} \cdot \prod_{f \in \Omega_{\rho}^{kl}} \left[\left(\frac{\xi_{\rho f,kt}}{\xi_{\rho f,lt}} \right) \right]^{-\frac{1}{N_{\rho}^{kl}}} \cdot \prod_{f \in \Omega_{\rho}^{kl}} \left[\left(\frac{S_{\rho f,kt}^{kl}}{S_{\rho f,lt}^{kl}} \right)^{\frac{1}{\eta_{\rho}-1}} \right]^{\frac{1}{N_{\rho}^{kl}}} \cdot \left(\frac{\lambda_{\rho,kt}^{kl}}{\lambda_{\rho,lt}^{kl}} \right)^{\frac{1}{\eta_{\rho}-1}}$$

with $\Omega_{p,lt}$ the set of common firms. Average expenditure share differences:

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@ 37/52

$$\prod_{f \in \Omega_p^{kl}} \left[\left(\frac{S_{\rho f,kt}^{kl}}{S_{\rho f,lt}^{kl}} \right)^{\frac{1}{\eta_p - 1}} \right]^{\frac{1}{N_p^{kl}}}, \quad \text{where} \quad S_{\rho f,lt}^{kl} \equiv \frac{P_{\rho f,lt} C_{\rho f,lt}}{\sum_{f \in \Omega_p^{kl}} P_{\rho f,lt} C_{\rho f,lt}} \forall f \in \Omega_p^{kl}$$

Through η_p this term captures

- Substitution effects when $P_{pf,kt} \neq P_{pf,lt}$ and $\xi_{pf,kt} = \xi_{pf,lt}$
- ► Taste differences when $P_{pf,kt} = P_{pf,kt}$ and $\xi_{pf,kt} \neq \xi_{pf,lt}$

Step 1: Cost-of-living Differences

Back

4

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ■ のへで 37/52

From Redding & Weinstein (2020), cost-of-living differences between region *k* and *l* are the ratio of unit expenditure functions in *k* and *l* respectively,

$$\frac{P_{p,kt}}{P_{p,lt}} = \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{P_{pf,kt}}{P_{pf,lt}} \right) \right]^{\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{\xi_{pf,kt}}{\xi_{pf,lt}} \right) \right]^{-\frac{1}{N_p^{kl}}} \cdot \prod_{f \in \Omega_p^{kl}} \left[\left(\frac{S_{pf,kt}^{kl}}{S_{pf,lt}^{kl}} \right)^{\frac{1}{\eta_p - 1}} \right]^{\frac{1}{N_p^{kl}}} \cdot \left(\frac{\lambda_p^{kl}}{\lambda_p^{kl}} \right)^{\frac{1}{\eta_p - 1}}$$

with $\Omega_{p,lt}$ the set of common firms.

Choice set differences:

$$\left(\frac{\lambda_{p,kt}^{kl}}{\lambda_{p,lt}^{kl}}\right)^{\frac{1}{\eta_p-1}}, \quad \text{where} \quad \lambda_{pf,lt}^{kl} \equiv \frac{\sum_{f \in \Omega_p^{kl}} P_{pf,lt} C_{pf,lt}}{\sum_{f \in \Omega_{p,lt}} P_{pf,lt} C_{pf,lt}}$$

Step 2: Technology and Market structure

Back

▶ We consider a CRS production technology and one production location in $z \in \mathcal{L}$:

$$\mathsf{TC}_{\textit{pf},t} = \underbrace{\sum_{l \in \mathcal{L}} \sum_{i \in \Omega_{\textit{pf},lt}} \phi_{\textit{pfi},zt} \cdot Q_{\textit{pfi},lt}}_{\text{Variable costs}} + \underbrace{\mathsf{F}_{\textit{pf},t} \cdot \mathbb{1}\left(\sum_{l \in \mathcal{L}} \sum_{i \in \Omega_{\textit{pf},lt}} Q_{\textit{pfi},lt} > 0\right)}_{\text{Fixed production costs}}$$

Market structure consists of iceberg trade costs with monopolistic competition (for now):

$$P_{\textit{pfi,lt}} = \mu_{\textit{pfi,lt}} \mathsf{MC}_{\textit{pfi,lt}}, \qquad \text{where} \quad \mu_{\textit{pfi,lt}} = \frac{\eta_{\textit{p(i)}}}{\eta_{\textit{p(i)}} - 1}, \quad \mathsf{MC}_{\textit{pfi,lt}} = \phi_{\textit{pfi,zt}} \cdot t_{\textit{pfi,t}}(\boldsymbol{X}^{zl}) \cdot \left(1 + \tau_{\textit{pfi,t}} B^{zl}\right)$$

Firms choose the set of barcodes to offer in each country:

$$\max_{\Omega_{\rho f, lt}} = \underbrace{\sum_{l \in \Omega} \sum_{i \in \Omega_{\rho f, lt}} \left(P_{\rho f i, lt} - \mathsf{MC}_{\rho f i, lt} \right) \Omega_{\rho f i, lt}}_{\text{Variable profits}} - \underbrace{F_{\rho f, t}^{X} \cdot \mathbb{1} \left(\sum_{l \in \Omega} \sum_{i \in \Omega_{\rho f, lt}} B^{zl} \Omega_{\rho f i, lt} > 0 \right)}_{\text{Market entry cost}} - \underbrace{\sum_{i \in \Omega_{\rho f, lt}} F_{\rho f i, t}^{X} \cdot \mathbb{1} \left(\sum_{l \in \Omega} B^{zl} Q_{\rho f i, lt} > 0 \right)}_{\text{Per variety fixed cost}}$$

Estimating σ_p - Strategy

Take logs of the residual product variety level demand curve:

$$c_{pfi,lt} = -\sigma_{p} p_{pfi,lt} + \sigma_{p} p_{pf,lt} + c_{pf,lt} + (\sigma_{p} - 1) \ln \left(\xi_{pfi,lt}\right)$$

Consider this expression at the retail chain level:

$$c_{\textit{pfic},\textit{lt}} = -\sigma_{\textit{p}} p_{\textit{pfic},\textit{lt}} + \theta_{\textit{pfic},\textit{n(l)y(t)}} + \theta_{\textit{pfic},\textit{n(l)w(t)}} + \lambda_{\textit{pfc},\textit{lt}} + \varepsilon_{\textit{pfic},\textit{lt}}$$

- $\theta_{pfic,n(l)y(t)}$ and $\theta_{pfic,n(l)w(t)}$ take out seasonal promotional activity.
- ► We use a Hausman (1996)-instrument to guard against residual regional demand shock:

$$ar{p}_{pfic,-lt} \equiv rac{1}{\mathcal{L}_n} \sum_{k \in n \setminus l} p_{pfic,kt}$$

Estimating σ_p - Results: $\hat{\mathbb{E}} \left[\hat{\sigma_p} \right] = -2.77$ with 10% - 90% : [-4.77, -1.15]

Figure 16: Elasticity of substitution σ_p

Estimating η_p - Strategy

Take logs of the residual product variety level demand curve:

$$c_{\rho f,lt} = -\sigma_{\rho} p_{\rho f,lt} + \sigma_{\rho} p_{\rho,lt} + c_{\rho,lt} + (\sigma_{\rho} - 1) \ln \left(\xi_{\rho f,lt} \right)$$

Consider this expression at the retail chain level:

$$c_{pf,lt} = -\sigma_p p_{pf,lt} + \theta_{pf,n(l)y(t)} + \theta_{pf,n(l)w(t)} + \lambda_{p,lt} + \varepsilon_{pf,lt}$$

- > $\lambda_{p,lt}$: Condition on price and quantity index and any other region-specific demand shock:
- ▶ $\theta_{pf,n(l)(y(t))}$ and $\theta_{pf,n(l)(w(t))}$ take out seasonal promotional activity.
- > We use a structural-instrument to guard against residual regional demand shock:

$$P_{pl,lt} = \tilde{P}_{pl,lt} \underbrace{\left(\sum_{i \in \mathcal{B}_{lp,lt}} \frac{S_{lpi,lt}}{\left(\prod_{i \in \mathcal{B}_{lp,lt}} S_{lpi,lt}\right)^{\frac{1}{n_{lp,lt}}}}_{\text{instrument}} \left(\prod_{i \in \mathcal{B}_{lp,lt}} \xi_{lpi,lt}\right)^{-\frac{1}{n_{lp,lt}}} \left(\prod_{i \in \mathcal{B}_{lp,lt}} \xi_{lpi,lt}\right)^{\frac{1}{n_{lp,lt}}}, \quad \text{with} \quad \left(\prod_{i \in \mathcal{B}_{lp,lt}} \xi_{lpi,lt}\right)^{\frac{1}{n_{lp,lt}}} = \left(\prod_{i \in \mathcal{B}_{lp,lt-1}} \xi_{lpi,lt-1}\right)^{\frac{1}{n_{lp,lt-1}}}$$

Estimating η_p - Results: $\hat{\mathbb{E}} [\hat{\eta_p}] = -3.10$ with 10% - 90% : [-4.84, -1.71]

Figure 17: Elasticity of substitution η_p

Categories

Decomposing cost-of-living differences -

	Quantiles of $P_{p,t}^{kl}$			Variance decomposition of $P_{p,t}^{kl}$		
$P_{p,t}^{kl}$	<i>Q</i> ₁₀	<i>Q</i> ₅₀	Q_{90}	$T_{ ho,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
EUROPE						
$\mathbb{1}\left(B^{k\prime}=0 ight)$	365	003	.441	.864	.002	.134
	[385,351]	[004,002]	[.424, .466]	[.845, .88]	[.002, .002]	[.118, .153]
$\mathbb{1}\left(B^{\kappa\prime}=1 ight)$	-1.12	071	1.006	.579	.021	.4
	[-1.18, -1.078]	[076,065]	[.959, 1.07]	[.496, .629]	[.016, .025]	[.351, .486]
USA						
$\mathbb{1}\left(B^{kl}=0 ight)$	346	.14	.79	.852	0	.148
	[36,333]	[.135, .146]	[.741, .853]	[.79, .879]	[0,0]	[.121, .21]
$\mathbb{1}\left(B^{kl}=1 ight)$	638	.02	.728	.826	001	.175
	[675,609]	[.019, .021]	[.693, .773]	[.781, .843]	[002, 0]	[.158, .22]

Table 5: Regional cost-of-living differences - Summary statistics

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.369***	.3009***	.1009***	.2685***
	[.3443, .3979]	[.2799, .3238]	[.0991, .1028]	[.2502, .2924]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.2476	.226	.0125	.043
Nr. treated	68	68	68	68
Nr. matched units	1	1	1	1
Nr. unique controls	41	41	41	41
Nr. obs	4,624	4,624	4,624	4,624
USA				
$\hat{\gamma}_{Y,\varepsilon}$.0103***	.0095***	.0058***	.0164***
	[.0037, .0153]	[.0032, .0152]	[.0054, .0063]	[.0145, .018]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.3987	.3438	.0236	.0871
Nr. treated	256	256	256	256
Nr. matched units	1	1	1	1
Nr. unique controls	63	63	63	63
Nr. obs	17,084	17,084	17,084	17,084

Table 6: Geographic market segmentation: Estimation results ($\varepsilon = 0.05$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.395***	.3186***	.0968***	.3006***
	[.3696, .4338]	[.3016, .3439]	[.0958, .0976]	[.2803, .329]
$\mathbb{E}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.2466	.2265	.0125	.0402
Nr. treated	154	154	154	154
Nr. matched units	3	3	3	3
Nr. unique controls	116	116	116	116
Nr. obs	26,192	26,192	26,192	26,192
USA				
$\hat{\gamma}_{Y,\varepsilon}$.0177***	.0173***	.0062***	.0187***
	[.0141, .0201]	[.0144, .0201]	[.0059, .0065]	[.0172, .0208]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4067	.3494	.0242	.0902
Nr. treated	623	623	623	623
Nr. matched units	3	3	3	3
Nr. unique controls	116	116	116	116
Nr. obs	99,464	99,464	99,464	99,464

Table 7: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$)

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$MC_{p,t}^{kl}$	$\mathcal{M}_{p,t}^{kl}$	$\Lambda_{\rho,t}^{kl}$
	(1)	(2)	(3)	(4)	(5)
EUROPE					
$\hat{\gamma}_{Y,\varepsilon}$.3787***	.3041***	.0917***	.0113***	.2972***
	[.3548, .4114]	[.2866, .3276]	[.0904, .0928]	[.0104, .0121]	[.2768, .3259]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.26	.2372	.021	.0143	.0427
Nr. treated	146	146	146	146	146
Nr. matched units	1	1	1	1	1
Nr. unique controls	81	81	81	81	81
Nr. obs	9,928	9,928	9,928	9,928	9,928
USA					
ŶYE	.0049*	.0092***	.0059***	.0024***	.0145***
	[0008, .0098]	[.005, .0138]	[.0054, .0063]	[.0019, .0028]	[.0127, .0165]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.4168	.356	.038	.0245	.0926
Nr. treated	0	0	0	0	0
Nr. matched units	1	1	1	1	1
Nr. unique controls	0	0	0	0	0
Nr. obs	40,100	40,100	40,100	40,100	40,100

Table 8: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$) - Markups

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{\rho,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
EUROPE				
$\hat{\gamma}_{Y,\varepsilon}$.3462***	.2556***	.1395***	.4264***
	[.3142, .3945]	[.2269, .2939]	[.1383, .1412]	[.3849, .4874]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.1425	.1218	.0131	.0352
Nr. treated	154	154	154	154
Nr. matched units	3	3	3	3
Nr. unique controls	116	116	116	116
Nr. obs	26,192	26,192	26,192	26,192
USA				
ŶYE	.0069***	.0027**	.0069***	.0195***
	[.004, .0099]	[.0008, .0047]	[.0065, .0071]	[.0159, .0248]
$\hat{\mathbb{E}}\left[\hat{Y}_{p,t}^{kl}(0)\right]$.2661	.2136	.0255	.0808
Nr. treated	623	623	623	623
Nr. matched units	3	3	3	3
Nr. unique controls	116	116	116	116
Nr. obs	99,467	99,467	99,467	99,467

Table 9: Geographic market segmentation: Estimation results ($\varepsilon = 0.10$) - CES preferences

Table 10: Robustness: Elasticities - Cutoff: 10% and Nr. controls: 1 - Europe

Y	$P_{p,t}^{kl}$	$T_{p,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
$\hat{\eta} + 0, \hat{\sigma} + 0$				
$\hat{\gamma}_{Y,\varepsilon}$.3787***	.3041***	.0967***	.2972***
	[.3548, .4114]	[.2866, .3276]	[.0953, .0977]	[.2768, .3259]
$\hat{\eta} + 0, \hat{\sigma} + 1$				
$\hat{\gamma}_{Y,\varepsilon}$.3259***	.2684***	.0967***	.2514***
	[.3168, .3403]	[.2595, .2794]	[.0953, .0977]	[.2432, .2615]
$\hat{\eta} + 0, \hat{\sigma} + 2$				
$\hat{\gamma}_{Y,\varepsilon}$.3181***	.2628***	.0967***	.2423***
	[.3097, .3314]	[.2538, .274]	[.0953, .0977]	[.2346, .2538]
$\hat{\eta} + 0, \hat{\sigma} + 3$				
$\hat{\gamma}_{Y,\varepsilon}$.3158***	.2611***	.0967***	.239***
	[.3077, .3284]	[.252, .2725]	[.0953, .0977]	[.2312, .2506]
$\hat{\eta} + 1, \hat{\sigma} + 0$				
$\hat{\gamma}_{Y,\varepsilon}$.3213***	.2337***	.0967***	.2126***
	[.2954, .358]	[.2168, .2553]	[.0953, .0977]	[.1938, .2438]
$\hat{\eta} + 1, \hat{\sigma} + 1$				
$\hat{\gamma}_{Y,\varepsilon}$.2323***	.1/6***	.0967***	.1496***
	[.2268, .2388]	[.1715, .1812]	[.0953, .0977]	[.1462, .1549]
$\eta + 1, \sigma + 2$	0111***	100 1000	0007***	1007***
$\gamma_{Y,\varepsilon}$.2111	.1634	.0967	.1337***
0 · 1 0 · 0	[.2077, .2149]	[.1597,.1663]	[.0953,.0977]	[.1312, .1361]
$\eta + 1, \sigma + 3$	0000***	1500***	0007***	1000***
$\gamma_{Y,\varepsilon}$.2023	.1566	.096/***	.1268
	[.1993,.2059]	[.1552,.1615]	[.0953,.0977]	[.1246,.129]

Notes: Reported significance levels are at the $p < 0.1^*$, $p < 0.05^{**}$ and $p < 0.01^{***}$ levels.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 - 釣�� 48/52

Table 11: Robustness: Elasticities - Cutoff: 10% and Nr. controls: 1 - USA

Y	$P_{p,t}^{kl}$	$T_{\rho,t}^{kl}$	$L_{p,t}^{kl}$	$\Lambda_{p,t}^{kl}$
	(1)	(2)	(3)	(4)
$\hat{\eta} + 0, \hat{\sigma} + 0$				
$\hat{\gamma}_{Y,\varepsilon}$.0049*	.0092***	.0062***	.0145***
	[0008, .0098]	[.005, .0138]	[.0059, .0065]	[.0127, .0165]
$\hat{\eta} + 0, \hat{\sigma} + 1$				
$\hat{\gamma}_{Y,\varepsilon}$.0141***	.0151***	.0062***	.0166***
	[.0109, .0167]	[.0115, .0182]	[.0059, .0065]	[.015, .0184]
$\hat{\eta} + 0, \hat{\sigma} + 2$				
$\hat{\gamma}_{Y,\varepsilon}$.0174***	.0173***	.0062***	.0177***
	[.0144, .0204]	[.014, .0201]	[.0059, .0065]	[.0161, .0194]
$\hat{\eta} + 0, \hat{\sigma} + 3$				
$\hat{\gamma}_{Y,\varepsilon}$.0193***	.0185***	.0062***	.0183***
	[.0163, .0222]	[.0155, .0215]	[.0059,.0065]	[.0168, .0201]
$\hat{\eta} + 1, \hat{\sigma} + 0$	0074***	0000*	0000+++	0040***
$\gamma_{Y,\varepsilon}$	0074***	0028*	.0062***	.0046***
A . 1 A . 1	[0118,004]	[0062,.0004]	[.0059,.0065]	[.0034, .0056]
$\eta + 1, 0 + 1$	0005	002***	0062***	0054***
$\gamma_{Y,\varepsilon}$	[00110025]	[0001 0037]	[0059 0065]	[005 0058]
$\hat{n} \pm 1 \hat{c} \pm 2$	[0011,.0020]	[.0001,.0007]	[.0000,.0000]	[.003,.0030]
ây -	0038***	004***	0062***	006***
/Υ,ε	[0024 . 0054]	[0023 0052]	[.00590065]	[0057 0064]
$\hat{n} + 1. \hat{\sigma} + 3$	[.002 1,.000 1]	[.0020,.0002]	[.0000,.0000]	[.0001,.0001]
ŶΥ e	.0057***	.0052***	.0062***	.0065***
1.1.20	[.0043, .007]	[.0037, .0063]	[.0059, .0065]	[.0061,.0069]

Notes: Reported significance levels are at the $p < 0.1^*$, $p < 0.05^{**}$ and $p < 0.01^{***}$ levels.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ♀ 0 ९ € 49/52

References I

- Anderson, J., & Wincoop, E. V. (2003). Gravity with gravitas: A solution to the border puzzle. *American Economic Review*, *93*, 170-192.
- Argente, D., Hsieh, C.-T., & Lee, M. (2021). Measuring the cost of living in mexico and the us. *American Economic Journal: Macroeconomics*.
- Beck, G., Kotz, H., & Zabelina, N. (2020, 11). Price gaps at the border: Evidence from multi-country household scanner data. *Journal of International Economics*, *127*, 1033-1068.
- Broda, C., & Weinstein, D. (2006). Globalization and the gains from variety. *The Quarterly Journal of Economics*, *121*, 541-585.
- Cavallo, A., Feenstra, R., & Inklaar, R. (2023). Product variety, cost-of-living and welfare across countries. *American Economic Journal: Macroeconomics*, *15*, 40-66.
- Cavallo, A., Neiman, B., & Rigobon, R. (2014). Currency unions, product introductions, and the real exchange rate. *The Quarterly Journal of Economics*, *129*, 529-595.

References II

- Engel, C., & Rogers, J. (1996). How wide is the border? *American Economic Review*, *86*, 1112-1125.
- Feenstra, R. (1994). New product varieties and the measurement of international prices. *The American Economic Review*, *84*, 157-177.
- Feenstra, R., Xu, M., & Antoniades, A. (2020). What is the price of tea in china? goods prices and availability in chinese cities. *The Economic Journal*, *130*, 2438-2467.
- Goldberg, P., & Knetter, M. (1997). Goods prices and exchange rates: What have we learned? *Journal of Economic Literature*, *35*, 1243-1272.
- Gorodnichenko, Y., & Tesar, L. (2009). Border effect or country effect? seattle may not be so far from vancouver after all. *American Economic Journal: Macroeconomics*, *1*, 219-241.
- Handbury, J., & Weinstein, D. (2015). Goods prices and availability in cities. *The Review of Economic Studies*, *82*, 258-296.

References III

- Hausman, J. (1996). Valuation of new goods under perfect and imperfect competition. InT. F. Bresnahan & R. J. Gordon (Eds.), (Vol. 58, p. 209-248).
- Helpman, E., Melitz, M., & Rubinstein, Y. (2008). Estimating trade flows: Trading partners and trading volumes. *The Quarterly Journal of Economics*, *123*, 441-487.
- McCallum, J. (1995). National borders matter: Canada us regional trade patterns. *American Economic Review*, *85*, 615-623.
- Redding, S., & Weinstein, D. (2020). Measuring aggregate price indices with taste shocks: Theory and evidence for ces preferences. *The Quarterly Journal of Economics*, *135*, 503-560.
- Santamaria, M., Ventura, J., & Yesilbayraktar, U. (2020). Borders within europe. *NBER Working Paper Series*, *1-87*, 1689-1699.